Hyperspectral Band Selection for Lithologic Discrimination and Geological Mapping
نویسندگان
چکیده
منابع مشابه
Lithologic Discrimination and Alteration Mapping From
Geologic maps are, by their very nature, interpretive documents. In contrast, images prepared from AVIRIS data can be used as uninterpreted, and thus unbiased, geologic maps. We are having significant success applying .AVIRIS data in this non-quantitative manner to geologic problems. Much of our success has come from the power of the Qnked windows Lrteractive Data ~stem. L,inkWinds is a visual ...
متن کاملMethodology for Hyperspectral Band Selection
While hyperspectral data are very rich in information, processing the hyperspectral data poses several challenges regarding computational requirements, information redundancy removal, relevant information identification, and modeling accuracy. In this paper we present a new methodology for combining unsupervised and supervised methods under classification accuracy and computational requirement ...
متن کاملBand Selection for Hyperspectral Remote Sensing
In hyperspectral remote sensing, sensors acquire reflectance values at many different wavelength bands, to cover a complete spectral interval. These measurements are strongly correlated and no new information might be added when increasing the spectral resolution. Moreover, the higher number of spectral bands increases the complexity of a classification task. Therefore, feature extraction is a ...
متن کاملBand Subset Selection for Hyperspectral Image Classification
This paper develops a new approach to band subset selection (BSS) for hyperspectral image classification (HSIC) which selects multiple bands simultaneously as a band subset, referred to as simultaneous multiple band selection (SMMBS), rather than one band at a time sequentially, referred to as sequential multiple band selection (SQMBS), as most traditional band selection methods do. In doing so...
متن کاملBand Selection with CFI and Supervised Classification for Hyperspectral Images
In this paper, we propose a new feature selection method for hyperspectral images. Firstly, the bands are selected by combining the information entropy, classification separability and correlation coefficients with the Choquet fuzzy integral. After that, maximum likelihood classification method is used for the classification. Experiments on the AVIRIS dataset show that the proposed method remov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
سال: 2020
ISSN: 1939-1404,2151-1535
DOI: 10.1109/jstars.2020.2964000